6 research outputs found

    Drawbacks and Proposed Solutions for Real-time Processing on Existing State-of-the-art Locality Sensitive Hashing Techniques

    Full text link
    Nearest-neighbor query processing is a fundamental operation for many image retrieval applications. Often, images are stored and represented by high-dimensional vectors that are generated by feature-extraction algorithms. Since tree-based index structures are shown to be ineffective for high dimensional processing due to the well-known "Curse of Dimensionality", approximate nearest neighbor techniques are used for faster query processing. Locality Sensitive Hashing (LSH) is a very popular and efficient approximate nearest neighbor technique that is known for its sublinear query processing complexity and theoretical guarantees. Nowadays, with the emergence of technology, several diverse application domains require real-time high-dimensional data storing and processing capacity. Existing LSH techniques are not suitable to handle real-time data and queries. In this paper, we discuss the challenges and drawbacks of existing LSH techniques for processing real-time high-dimensional image data. Additionally, through experimental analysis, we propose improvements for existing state-of-the-art LSH techniques for efficient processing of high-dimensional image data.Comment: Accepted and Presented at the 5th International Conference on Signal and Image Processing (SIGI-2019), Dubai, UA

    qwLSH: Cache-conscious Indexing for Processing Similarity Search Query Workloads in High-Dimensional Spaces

    Full text link
    Similarity search queries in high-dimensional spaces are an important type of queries in many domains such as image processing, machine learning, etc. Since exact similarity search indexing techniques suffer from the well-known curse of dimensionality in high-dimensional spaces, approximate search techniques are often utilized instead. Locality Sensitive Hashing (LSH) has been shown to be an effective approximate search method for solving similarity search queries in high-dimensional spaces. Often times, queries in real-world settings arrive as part of a query workload. LSH and its variants are particularly designed to solve single queries effectively. They suffer from one major drawback while executing query workloads: they do not take into consideration important data characteristics for effective cache utilization while designing the index structures. In this paper, we present qwLSH, an index structure for efficiently processing similarity search query workloads in high-dimensional spaces. We intelligently divide a given cache during processing of a query workload by using novel cost models. Experimental results show that, given a query workload, qwLSH is able to perform faster than existing techniques due to its unique cost models and strategies.Comment: Extended version of the published wor
    corecore